造神年代(出书版) 第39节(2 / 4)

投票推荐 加入书签 留言反馈

  “假设你在看书。印刷文字反射的光线投在你的视网膜上,感光细胞开始一群群激励,向大脑中连着的神经元发送冲动。有些冲动的组合序列代表受激励的感光细胞直线排列,大脑把它抽象为“直线”,在上一层用一个或者几个细胞的组合代表。同样的方法也产生“弧线”这样的抽象。几个‘直线’和‘弧线’的特定序列组合,在更上一层抽象为字母h。几个不同字母的组合序列,在更上一层抽象为单词horse。记录horse的组合序列,会跟另外一些早已存在的序列连接起来——比如你听见这个单词的读音产生的序列,那是耳朵接收音频转换生成的序列。
  “所谓连接,就是共同激励,你一兴奋我就兴奋。英国和美国口音horse的念法不同,男人和女人的声音频率也差得远。但是没有关系,它们跟视觉产生的单词序列都连在一起,还跟你曾经看见一匹马的视觉图像序列连在一起。除了英文你还会说中文。那么,ma的发音跟horse天差地远,在你大脑中两个代表不同音频的序列仍然连在一起。这几个序列彼此全部连通,那么就会再次向上层细胞抽象。在这一层,‘马’已经甩掉了黑毛还是白毛、听觉还是视觉、文字还是图像、中文还是英文这些不必要信息,成为一个真正的概念,用一个特定神经元组合记下来。我们可以叫它马细胞。那么以后你不管通过哪种感官接收到关于‘马’的信息,甚至闭上眼自己想一下,马细胞都会兴奋起来。”
  “它还会跟大脑中许许多多其它概念连起来。比如另有一个‘牛’的概念。这两个东西的组合序列会很相似,因为抽象出它们的下层序列和关联概念,很多都是重合的。比如四条腿,比如都能被人养。大脑会发觉这两个组合序列相似,虽然不清楚该叫什么,先连起来再说。以后你再听到‘家畜’这个说法,更高一层的概念名字就取好了,新的存储组合也生成了,以后认识的猪和羊都连到这里。这就是大脑的第三招:分类。这种层层抽象还会向上延伸,比如生成‘动物’的概念。还会跟其它概念产生横向连接,比如‘马’可能连接到‘老婆’。为什么会这样连接?因为‘马’这个概念的下层包括一张抽象的、长长的脸。你的大脑中“老婆”这个概念已经连到了这里,双方共用这个下层概念神经元组合,所以连上了。连上之后,别人小声说‘母马’,你就会很敏感,觉得是在骂你老婆。”
  听懂的人都听得痴了。没听懂的又开始推测图海川的婚姻问题。
  “组合序列记录、模式抽象、分类。大脑就靠这三招,在内部建立了一个世界模型。如果这个模型是一座大厦,我刚才描述的局部就比一块砖还小。然而,整个大厦都是用这种机制建成的。这个世界模型的物理位置在大脑皮层,仅仅用了六层细胞,大概一千亿个。我们遇到的每一个需要智能解决的问题,大脑都在建好的世界模型中推演,就像棋手先推演下面几步,再落子。这叫预测。或者根据新的信息,先在世界模型中增添新组件,和旧组件建立连接,再来推演。这就叫学习,或者叫记忆加预测。
  “做ai的人都有共识:智能的本质就是记忆加预测。我们头骨里面这个记忆-预测模型,有些人大,有些人小,所有人都有不同程度的歪曲。但大脑解决所有问题都是把它放在整个世界模型中运行。这样来看大脑,它不是通用智能才怪!”
  没有一个人说话,没有一个人的眼睛离开图海川的脸。只有一些小国代表受不了自己的译员了,用耳机连上公共翻译。
  “一个小巧、简洁、通用的世界模型。听起来就能把人迷死。想制造大脑的人远远不止我一个,古往今来太多了。为什么他们都失败了?我们再回头来看看连接主义者,在我之前最近的尝试。”
  “他们的直觉其实是对的。分布式网络,单元最简行为,海量输入数据施加压力,让网络自己学习、生长、进化。这些都是构造大脑的基本原则。世上最复杂的东西都是长出来的,而不是设计出来的。也不要以为‘连接主义’在ai界成了贬义词,它就死掉了。当今主流的ai技术:深度学习或者机器学习,它们的内核还是这些原则,只是设计使用的数学工具先进了无数倍,再加上不声张而已。你最多能听见他们说‘黑箱卷积’或者‘玄学调参’。
  “既然原理相同,那为什么从前的连接主义者尸横遍野,当代偷师了连接主义的概率学ai仍然看不到大脑的尾灯?原因只有一个:大脑比它们先出发——大概五亿年。
  “大脑的世界模型不是从你出生开始构建的。只有最顶层很少的一部分才跟出生后的学习有关。下面占多数的底层,组合序列早已建好,预测模型早已完美,数据庞大到不可思议,连接复杂到不可思议,都是你继承的遗产。这些部分很多跟你的身体有关,更多的与外部世界有关。随便挑出一个局部,都能让顶尖的概率学ai汗颜。
  “我们挑个简单的:皮肤上的压力感受器。你刚出生,它就对外部世界无师自通。给它个尖锐而快速的压力——痛觉,模型预测是荆棘或者爪牙,对策是不经过意识反应直接缩开,越快越好。给它个点状分散、轻微而移动的压力——痒觉,模型预测是昆虫或者腐蚀性物质,对策是没手的去树上蹭,有手就用手挠。给它个宽广、稳定而柔和的压力,模型预测是爱抚,对策是通知某个腺体分泌神经递质,神经递质促进一大片预先编好的组合序列兴奋起来,让你觉得爽,还会启动一整套社交行为。比如四脚朝天亮出肚皮,或者放开奶头笑一下,或者呻吟两声鼓励他继续。”
  听众们一直屏息静气,这时突然爆出一片喝彩与掌声。图海川绝望地想:幸亏加的料够多。
  “这么庞大复杂的底层模型,当然也是一点点学习外部世界,学出来的。不是我们自己,是五亿年间每一个直系祖先。学习方法是世界让神经建模不行的早点去死,或者终身破不了处,那些就不是我们的祖先。建模够快、够准确的才有资格做祖先。它们把整体建模的菜谱刻在基因组当中传给我们——菜谱,不是蓝图!也就是说,每个人头颅中的世界模型刚一出生,对世界的学习就已经持续五亿年。所以它才会长得那么复杂。
  “而连接主义者呢?他们输在起跑线上。人工神经网络从一无所有的白纸开始。不仅节点和连接数量没法跟大脑比,探索阶段的学习数据摄入量,几张打印纸就可以抄完。我说过,他们的原则没有问题。也许让他们搞上一千年,人工神经网络能赶上大脑的水平。毕竟人类操纵进化比自然快得多,看看狗就知道——真正的狗,不是阿尔法狗。但是现代社会不可能等你一千年。阿里集团放手让我玩了十年,已经是理解与慷慨的巅峰了。”
  孤零零一只手举起。这是一位小国代表。
  “图博士,您的智能学讲座精彩绝伦。但是为国际社会的团结考虑,能否请你不要把进化论这样充满争议的学说带进来呢?我相信我们今天是来达成共识的,不是来争吵的。”
  “谢谢您的夸奖,主教大人。这次会议开三天,就算今天我们不争吵,明天后天也一定会。还有,如果您无法接受任何一种包含进化论的表述,那么再听我讲半小时,您会发现我们全体坐上了高速列车,直奔地狱。”
  主教似乎被吓住了。他刚坐下,英国技术代表杰米斯爵士又举起了手。
  “非常感谢你给同行上的生物课。请问你是生物学家吗?或者神经学家?或者有医科学位?”
  “都不是。但2029年上班的第一个月,我的团队就招募了四位顶尖的认知神经学家。其中一位是你的剑桥校友,你们认识。接下去两年我就差跟他们睡觉了。”
  爵士笑着说声“真有钱”就坐下了。他身边的嘉德接过来:“也就是说你还是个外行。请问这里有专业人士吗?他刚才说的是权威理论,还是华丽的想象?还有,这些跟我们今天的主题真的有关吗?”
  会场安静了片刻。
  瑞士代表团一位女士怯生生站起来:“我在海德堡大学教过二十年神经生理学,也许能给个参考。图先生刚才讲的,原则上很准确。只是……省略了很多细节,经过高度抽象。我刚才听起来也像是才明白。”
  图海川向她鞠了一躬:“谢谢您证明我的大脑还在正常工作。嘉德女士,我向你担保,刚才这些问题关系重大。因为下面我就要讲为什么别人造不出来,我却造出来了。
  “当今的概率学ai做法很精明。他们不去妄想整个世界的数据,而是专攻非常狭窄、非常单纯的一点。比如规则简单到极致的围棋。阿尔法狗上手先看几百万张棋谱,这比任何人加上他的所有祖先能下的棋还要多得多。所以人永远下不过狗了,这样看没有任何意外。课题稍微宽泛一点,概率学ai的吃力程度就指数上升。因为它的架构原则不是为复杂数据准备的,缺乏通用潜力,更没有几亿年累积的世界模型。比如人脸识别,ai最成功的领域之一。从上个世纪开始搞了八十年左右,投入不计其数的智慧、金钱和算力,计算过上百亿张脸,现在ai终于超过人了。还不是完全超越,抗干扰能力和跨年龄识别还远远比不上。大脑呢?刚才那个吃奶的婴儿就会识别人脸。等他八十岁的时候,还能识别八岁时见过的脸!
  “正是这样成功的例子,让我在2029年接近完全绝望。这个世界太大、太复杂,数据量无限。我们用概率学ai攻克人脸识别这样一个小小的领域都需要八十年的消耗战,什么时候才能建成一个世界模型?”
  图海川的声音变低了,眼睛不再看听众,似乎坐在那里自言自语。听众们全神贯注,跟着浸入2029年那颗独自沉思的大脑之中。
  “我想不起从哪天开始,意识到互联网的结构和大脑极其相似。分布式网络,不是设计的而是生长的,自然适应物质世界环境,自然分层,自然分区,底层节点连接着无数感官,接受无数种信息,被这些信息塑造,继续生长。它就在那里。我可能一直都知道。
  “但是互联网极端复杂的数据结构和通信协议蒙蔽了我的眼睛,让我不敢向那扇门迈出一步。门后面的东西太庞大、太复杂,而我想要的是简化——直到我认识王招弟博士。万国宝的诞生,第三位需要感谢的人是她。如果说我是一个大号反应池,乱七八糟的东西都腌在里面慢慢发酵,王博士就是一道闪电,瞬间点燃所有反应。” ↑返回顶部↑

章节目录